
Chemical Kinetics: Catalysis

Enzyme Mechanisms
The nitty-gritty of enzyme/substrate dependencies
Michaelis-Menten Mechanism

kcat and KM, turn-over number
Lineweaver-Burke plots

Bisubstrate Reactions
Inhibition
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A standard textbook on Enzyme Kinetics (Irving Segal) lists over 50 differentiable
mechanisms for enzymatic function:

Michaelis-Menten

Competetive Inhibition

Iso-Ordered Ping-Pong
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For all these reaction types there are a fairly algorithmic way of solving for their 
rate laws. In all cases this involves:

1) Writing them down as elementary reaction steps
2) Making approximations:

a) stationary state approximation
b) rapid equilibrium approximation
c) conserved total enzyme
d) large but not too large concentration of S’s
e) small but not too small concentration of E
f) we are interested in only initial rates
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1 Michaelis-Menten

We have seen the example of the Michaelis-Menten mechanisms many times now.

They solve via the stationary-state approximation:
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][ Enzymes are present at 
about 10-8-10 -10M.

Substrates at more like 
micromolar to millimolar



SK
SEkESkv

M

t
catcat +

== ][0

The rate of product production for a Michaelis-Menten enzyme is thus
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We generally talk about initial rates because otherwise, as P gets large, there must
be a back reaction (remember thermodynamics!)
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So back to the Michaelis-Menten Equation

Notice that if k-1 >> kcat then the Michaelis constant is the dissociation constant!
This is the rapid equilibrium assumption!
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Now when we are doing real experiments our velocity curves don’t look so good!

It’s difficult to fit the line through the data with standard tools….much better to do a
linear regression!

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

[S]

v0

[S]

v0








 +=+=

+
==

S
K

VSE
SK

kv

SK
SEkESkv

M

t

M

cat

M

t
catcat

1111

][

max0

0

Lineweaver and Burk came up with the following simple transform:

So plotting 1/v0 versus 1/[S] gives a linear plot with 

y-intercept= 1/Vmax
slope= Km/Vmax

x-intercept= -1/KM
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So Lineweaver-Burk plots are linear for Michaelis-Menten Enzymes.

How do they look for more complicated cases?

Note that they give measure of Km and Vmax.

But Vmax is a non-specific measure unless you have absolutely pure enzyme in your
prep and you know its molecular weight!

Only kcat is a measure of the intrinsic activity of the enzyme!
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These rates are also called ‘turn-over’ numbers since they are a measure of how 
many molecules the enzyme can process per second working at maximum rate!

In general, Vmax ranges from between 100-10,000,000 per second.

However, the overall rate of the production of product from substrate is lower
due to the “Collision probability” term.
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When this term is dominates by k1 then it is diffusion controlled.

(Sometime, Vmax is estimated to be larger than can be explain by collision.)
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Competitive Inhibition

Enzymes can be affected by binding of non-substrate molecules.
Inhibition can occur through numerous routes.
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Non-competitive Inhibition

And don’t forget cooperative/allosteric models.
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Competitive Inhibition

The effect of a competitive inhibitor is to remove some enzyme from the pool
available to interact with S.
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The apparent effect is to lower the apparent binding constant of the enzyme for
the substrate.
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On the other hand for a system like this we get:
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Which shows that the net effect of the 
inhibitor is to decrease the apparent
Vmax of the enzyme.
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Uninhibited Competitive Non-Competitive
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What will be the effects on a Linweaver-Burk plot!
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What happens in more complex mechanisms?

This last reaction mechanism, for example, is what happens with superoxide 
dismutase.
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Stochastic Mechanisms in Gene Expression

• Successive competitions between RNase and ribosomes*
• Geometric distribution of number of proteins per 

transcript

• Successive competitions between RNase and ribosomes*
• Geometric distribution of number of proteins per 

transcript

*Yarchuk, O., Jacques, N., Guillerez, J. & Dreyfus, M. (1992), “Interdependence of translation, transcription and 
mRNA degradation in the lacZ gene,” J. Mol. Biol. 226(3), 581-96



• Lineage commitment in human hemopoiesis

• Random, bimodal eukaryotic gene transcription in
– Activated T cells
– Steroid hormone activation of mouse mammary tumor virus
– HIV-1 virus

• Clonal variation in:
– Bacterial chemotactic responses
– Cell cycle timing

• E. coli type-1 pili expression 
– Enhances virulence

• Changing cell surface protein expression
– For immune response avoidance

• Bacteriophage λ lysis/lysogeny decision

Some Stochastic Cellular Phenomena



• Random environmental influences

• Mutations

• Asymmetric partitioning at cell division

• Stochastic mechanisms in gene expression
– Stochastic timing of gene expression
– Random variation in time for signal propagation
– Random variation total protein production

Where Noise Comes From



A simple example

 gene aPA
A

Promoter

Signal Protein
A2 AA

A *
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Timing uncertainty reduced by:
• Higher gene dosage
• Strong promoter
• Multiple promoters
• Lower effectivity threshold
• Slower cell growth

Timing uncertainty reduced by:
• Higher gene dosage
• Strong promoter
• Multiple promoters
• Lower effectivity threshold
• Slower cell growth


